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Abstract: Highly tunable carbohydrate vicinal diphosphinites are viable ligands fudnkhﬂmlyudkymmy]anm of
olefing, Substitution of elecuoa-w:mdmwmgaryl at phosphorus in these diphosphinites increases

enantioselectivity of the hydroformylation process. Veryhsghmhedmlinwmdmmmm(m%)m
obtained. Thus far only moderate enantioselectivity {up to 72%) has been achieved

The development of better asymmetric hydroformylation catalysts continues to be a challenging
problem, because the chemoselectivity (eg. hydroformylation products versus hydrogenation products), the
regioselectivity (branched versus linear aldehyde formation), and the enantioselectivity must all be excellent in
order to have a viable commercial process.! The pioneering work in the asymmetric hydroformylation of
olefins involved the use of platinum calatlysts in the presence of Lewis acids,2 but the overall selectivity using
these platinum systems still remains modest. Rhodium systems have since been demonstrated to provide
excellent chemoselectivity and regioselectivity in the hydroformylation reaction,34 and most recently, high
enantioselectivities have been reported with bidentate phosphiteS and mixed bidentate phosphine/phosphite§
ligands. Previously, we reported the application of carbohydrate diphosphinites such as 17 in the Ni(0)-
catalyzed hydrocyanation of vinylarenes8 and discovered that electron-deficient aryl groups at phosphorus
such as 1b and 1c provided higher enantioselectivities. Only a few other examples of the enhancement of
selectivity in asymmetric catalysis by electronic tuning of ligands have been reported.10 Herein, we describe
the utilization of easily modified ligands 1 in the asymmetric hydroformylation of olefins and the effect of
changing the aryl groups at phosphorus.

Ph"‘\\oo 8. Ar = CgHs
,5%— b. Ar = 3,5-(CF3),CHs
AP S—O0Ph ¢. Ar = 3,5-F,CgHy
1 P'Arz d. Al' = 3,5'(CH3)2C5H3

Initially, the use of Pt-catalysts was explored, but the chemo-, regio-, and enantioselectivity of the
hydroformylation reaction was quickly found to be poor in accord with many of the previously used Pt
systems.}2 For example, the hydroformylation of 6-methoxy-2-vinylnapthalene (2a) using complex
[12]PtClp11 with 1.5 eq of SnCl3 in benzene at 60 °C under 2400 psi of Hy/CO provided a 51:39:10 mixture of
branched aldehyde 3a, linear aldehyde 4a, and hydrogenated product Sa in 100% conversion.!2 In this case
less than 5% ce was observed for 3a. Unfortunately, the more electron-deficient diphosphinite 1b provided a
49:18:33 mixmure of 3b (<5% ee), 4b, and 5b when 2-vinylnapthsiene (2b) was hydroformylated under the
above conditions.
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These poor results with the Pt catalysts prompted us to investigate the corresponding cationic rhodium
systems [1JRh(COD)BF;4 (see Table).!13 Encouragingly, the rhodium catalysts provided good yields of the
desired branched aldehydes under very mild conditions (see Table). Using the rhodium catalysts, we clearly
saw an increase in the enantioselectivity of the hydroformylation reaction when the aryl group at phosphorus
was changed from the simple phenyl derivitive 1a to the more clectron-deficient 3,5-
bis(triflucromethyl)phenyl 1b. For example, in benzene 3b was obtained in 10% ee when 1a (entry 1) was the
ligand in the hydroformylation of 2b, whereas a 38% ee for 3b (entry 2) was obtained when 1b was employed.
Thus, the enantioselectivity of the rhodium-catalyzed hydroformylation reaction is sensitive to the electronic
nature of the phosphinite ligand in a fashion similar to the Ni(0)-catalyzed hydrocyanation reaction,8.14

| CHg
\!‘CHO CHO
R catalyst R R
2a.R = CH;0 3 4 5
b.R=H

Next, optimization of the reaction conditions using the electron-deficient ligand 1b was undertaken.
Solvent effects were found to be very important in the enantioselectivity of the hydroformylation reaction,
although the solvent had little effect on the regioseleciivity of the reaction. Typically >94% of the product was
the branched aldehyde 3b. For example, under identical conditions (1600 psi H2/CO, room temperature, 18h),
in the hydroformylation of 2b using ligand 1b, the ee of 3b increased from 12% in THF (entry 6), to 38% in
benzene (entry 2), to 51% in hexane (entry 3). These results are similar to the hydrocyanation reaction,?
where nonpolar solvents provide higher ee’s. The Hz/CO pressure was also found to change the
enantioselectivity of the hydroformylation of 2b. Using the best solvent, hexane, the ee of 3b was
approximately the same at 500 and 1600 psi (49 and 51% ee, respectively), but dropped off to 31% at 2400
psi. Racemization of the product aldehyde has been reported to be a major problem,!-2 so the reaction was
performed in hexane and CH(OEt)3 (10 eq) to trap aldchyde 3b as the corresponding acetal; however, only a
17% ee was obtained.!5 Thus, the presence of triethyl orthoacetate appears to be detrimental in this case.
Atempting to reduce the aldehyde products to the corresponding primary alcohols in situ by using Et3SiH as
the solvent (a presumably nonpolar solvent) provided the most remarkable result. In this case, no reduction to
the alcohol was observed, but the enantioselectivity of the reaction increased to 72% ee.16

In the present study, it became clear that it was impossible to gauge the electronic effect on the multitude
of individual steps (viz. CO insertion, alkyl migration, reductive elimination, etc.) in the hydroformylation
reaction. Nonetheless, from a practical standpoint it is useful to estimate the overall effect, so a series of
ligands 1 with electron-withdrawing and electron-donating aryl groups were investigated in the Rh-catalyzed
hydroformylation of 2a (see Table, entries 9-20). These reactions were performed in hexane and the pressure
of Ha/CO was varied. We confirmed that the ec was not only dependent on the ligand, but that the Ho/CO
pressure also had a major impact on the observed ee. However, an overall trend can be established since at
any given pressure of H/CO, the more electron-deficient phosphinites bis(trifluromethyl) derivative 1b and
difluoro derivative 1c typically provided higher ee’s than the corresponding ligands with simple phenyl 1a or
with the dimethyl derivative 1d. For example, at 1600 psi the ec of 3a increases from practically 0 to 10 to 25
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to 39%, when using 1d, 1a, 1c and 1b, respectively. A most curious result is that each ligand appears to have
a maximum effect on the enantioselectivity occurring at 1600 psi of H/CO with a somewhat sharp apex,
except for the difluoro derivative 1¢, which provides similar ee's over a broader pressure range. Because low
conversions were obtained in hexane, most likely arising from catalyst solubility problems, we performed the
reactions in THF and found a similar trend for the electronic effect.

Table: Asymmetric Hydroformylation of 2 using [1JRh(COD)BF4

Entry  Substrate  Ligand solvent pressure (psi) _conversion (%). 3a:da®  %ecdb
1 2b 1a Benzene 1600 20 95:5 10
2 2b ib Benzene 1600 43 973 38
3 2b 1b Hexane 1600 53 96:4 51
4 2b 1b Hexane 500 100 95:5 49
5 2b 1b Hexane 2400 80 96:4 31
6 2b 1b THF 1600 7 97:3 12
7 2b 1ib Hexane + CH(OE)3 1600 85 95:5 17¢
8 2b 1b Et3SiH 1600 20 95:5 72
9 2a 1d Hexane 500 <5 n.d. <1
10 2a 1a Hexane 500 <5 nd. nd.
11 2a 1c Hexane 500 <5 nd. 24
12 2a 1b Hexane 500 73 90:10 12
13 2a 1d Hexane 1600 <5 nd. <<
14 2a 1a Hexane 1600 <5 nd. 10
15 2a 1c Hexane 1600 <5 nd. 25
16 2a ib Hexane 1600 73 94:6 39
17 2a 1d Hexane 2400 <5 nd. <1
18 2a 1a Hexane 2400 <5 nd. 7
19 2a 1c Hexane 2400 <5 nd. 16
20 2a 1b Hexane 2400 31 95:5 12
21 2a 1d THF 500 <5 nd. <4
22 2a la THF 500 18 94:6 8
23 2a 1c THF 500 38 95:5 <1
24 2a 1b THF 500 35 95:5 24

4 d. (not desermined). © Determined by HPLC (seo reference 12). © Determined by ' H NMR using Eu(hfc)3.

Finally, the hydroformation of other olefins was explored briefly (hexane, 1600 psi) using
[1b]JRh(COD)BF4 as the catalyst: olefin (branched:linear, ee), styrene (96:4, 24%), 4-methylstyrene (94:6,
30%), vinyl acetate (92:8, 14%).

In conclusion, we have shown that diphosphinites 1 are good ligands in the rhodium-catalyzed
hydroformylation of olefins providing high regio- and chemoselectivity for branched aldehyde products 3,
although the enantioselectivity remains moderate. We have also demonstrated that the enantioselectivity can
indeed be influenced by the electronic nature of the metal catalyst. Further studies are in progress.
Acknowledgment: We thank Dr, A. L. Casalnuovo for many useful discussions.
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